If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x-120=0
a = 1; b = -10; c = -120;
Δ = b2-4ac
Δ = -102-4·1·(-120)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{145}}{2*1}=\frac{10-2\sqrt{145}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{145}}{2*1}=\frac{10+2\sqrt{145}}{2} $
| 10x+30=40+5x | | (6x+4)/8=(-3x+12)/3 | | 0.1x^2+2.4x+25=0 | | -1,5+5b+3,5=0,5b-3+2b | | (4x-8)/6=-7x+37 | | -(-12)=n | | (-5x+60)/3=5x | | 7+5r+5=1+7r | | (9x-10)+(4x-5)=180 | | (4x-80)/8=3x | | 7=4.2/x | | 1n/3n+2=2n/3n | | Y=25(2.1)t | | 1n÷3n+2=2n÷3n | | 3x+179=6+238 | | j-39=93 | | 11y+4y-9y+2=8 | | y-3y=2 | | -3z-6=3(z+8) | | 3n-2=1n-8 | | -4x-6+2x=-12 | | –b=132 | | 7/3x+1/3=18/3 | | 4z-z-2=16 | | 3y+7y-4y=-6 | | 15x+14.5=35.5 | | 16a-3a-5a-4=20 | | 4(2k+3)+4=11(k-1) | | 20x+14=(-6) | | 5x2-2x3=43 | | -4j+18-19=-9+4j | | 5.4–6x=–6 |